Surface Processing of Spoke Cavities for RIA

M.P. Kelly K.W. Shepard M. Kedzie J.D. Fuerst

Higher gradients in drift-tube cavities for RIA

RIA Driver Linac

- Cost and Performance
- Clean processing techniques for drift-tube structures
- Developed for TESLA and at JLAB for elliptical cell cavities
- Recent progress related to drift-tube cavities

ANL β =0.3 and β =0.4 Prototype Spoke Cavities for RIA

- Constructed in 1996-97
- Single-cell 350 MHz solid niobium

- Electropolished
- Electron-beam welded
- Light chemical polish
- BCP and HPR

See Delayen et al, SRF 1993, for discussion of 805 MHz spoke

A Two-cell β =0.4 Spoke Cavity for RIA

•345 MHz

•Solid niobium, 3.175 mm RRR≥250 sheet

•Plan for Surface for Treatment: Heavy EP, HPR, e-beam Closure Weld, Light BCP, and HPR

Completed: 100-200 µm removed

ANL Drift-Tube Cavity Surface Processing: An Automated High-Pressure Rinse System

- Ultra-pure DI water
- •20 l/m, up to 3000 PSI (1750 PSI)
- •0.04 μm filtration

Electropolished Nb surface Before and after HPR at 1750 PSI

High-Pressure Rinse System: Manufacturers

High-pressure filtratration

- •Domnick-Hunter PROPOR PES 0.04 μm, housing product #VIL01ABN-HP 4350 PSI
- •Swagelok filter SF-8F-K4-05, housing SF-6TF2-LE
- Plumbing: Swagelok 8R nylon bore, 4000 PSI

High-pressure Pump

•Karcher HD1090 3000 PSI, 4 GPM

Translation carriage, nozzles:

- StoneAge Waterjet Tools (CAVQ custom lancing system)
- Nozzles TD-010-P4

A Manual High-Pressure Rinse

Used for:

- Cleaning after EP
- Prior to e-beam weld
- Coupler parts, bagged and assembled downstairs

ANL β =0.4 Prototype Spoke Cavity Test Results

ANL β =0.3 and β =0.4 Prototype Spoke Cavity Results

Argonne Result β =0.4 cavity

Los Alamos Result β =0.3 cavity

ANL β =0.4 Spoke Cavity at 7 MV/m for One Month

Tests of 345 MHz Two-cell Spoke Cavity

Tests of 345 MHz Two-cell Spoke Cavity

- •Cavity space sealed in clean area
- •ATLAS refrigerator for long-term tests
- New rf coupler, phase stabilize
- Vibration damping mount

Surface Processing of Two-cell Spoke Cavity: Electropolish

Siemens 689.5% by vol. of H₂SO₄ (96% conc. by weight) 10.5% by vol. of HF (40% conc. by weight)

- •76 liters housing, 15 liters end plate 50-100 cycles
- Power supply voltage: 19 V
- •Power Supply On/Off \rightarrow 60 sec./90 sec. ("one cycle")
- •Acid Temperature: 31.5°C +/- 0.25°C
- Recirculate acid only during Off time
 20 liters/min pumped

Surface Processing of Two-cell Spoke Cavity: Electropolish

Housing Electrode

3/8" 3003 Al tubing

•Housing area: 8600 cm² Cathode area: 4300 cm²

•Endplate area: 1650 cm² Cathode area: 2110 cm²

End Plate Electrode

Surface Removal Rates on the Spokes and Outer Housing

- Housing flipped after each 50 cycles
- •Clear difference between upward and downward facing surfaces

Total Thickness Niobium Removed (mil)

